

铸件抛光是铸件后处理的主要手段;但是,在此过程中产生的粉尘无法控制,大量的铬粉和镍颗粒会对环境造成危害.由于吸入粉尘,手工打磨会导致呼吸道和肺部疾病,甚至尘。而且人工抛光效率低,工件产品一致性差,报废率高。在机械打磨过程中,高密度灰尘会影响夹紧操作中使用的设备。高密度灰尘附着在设备上,灰尘会降低夹紧设备的精度和稳定性。当采用智能打磨方案时,密封机器人和传感设备,从而防止灰尘进入是一个挑战。此外,高密度的灰尘会阻挡传感设备的表面,这意味着它们无法准确地做出判断。同时,大的振动会对现场操作产生严重影响。







磨床在刚性和成本方面性能良好,但灵活性差,工作空间小,不适应智能制造的多样化需求。数控磨床在刚度和精度方面表现优异;然而,对于大型复杂曲面零件的加工,高精度数控磨床的成本太高,因此不适合中小型企业采购。除了其低刚度之外,机器人打磨系统在灵活性、工作空间、多功能性和成本方面具有突出的性能。集成机器人打磨系统的铸件后处理打磨工艺具有很大的发展潜力;而打磨机器人采用的主体结构设计方法不仅设计周期长,而且打磨稳定性和刚度差,不适合产品推广。因此,将柔顺控制理论与工业机器人打磨模式相结合的末端执行器得到了研究者的广泛研究。


表示由传感装置获得的待抛光工件的数据模板;待抛光工件的局部模板特征;通过精细配准显示B在A中的位置。配准后便于磨具规划工件的加工路线,可以大大提高加工精度。高精度匹配对于自动打磨至关重要。
上述基于2.5D局部特征信息的打磨方法,深度方向精度较低,可用于加工精度要求不高的零件。使用局部信息抛光的缺点是需要额外的步骤来获得表面信息,并且像2D方法一样,这需要从单独的特定视点进行表示。